

Tissue Imaging with New MALDI-TOF(TOF) Instrumentation Presented at MSIA 2013 Vanderbilt University April 17,2013

Marvin Vestal, CSO

Outline

- Design Philosophy
- Modular Approach
- Technical Advances
 - 5 kHz laser
 - Efficient Ions Optics
 - Improved time focusing
 - Fast and efficient high mass detector
 - High resolution precurser selection and multiplexing for TOF-TOF
- Summary of performance
- Application to tissue imaging

Commercial products introduced at ASMS 2012

Design Philosophy

- We have employed a modular design philosophy, where a number of systems/modules are common to all three initial products.
 - Reduces complexity
 - Delivers advantages for manufacturing and supply chain.
 - Facilitates our simultaneous introduction of multiple products
 - Enables options that respond to the needs of specific customers and applications.
- Deliver a robust/reliable product that consistently performs as intended.
- Design for manufacturability and serviceability
- Build on decades of experience designing, building, and maintaining instruments, particularly mass spectrometers
- Keep the manufacturing process as simple and straightforward as possible
- Ensuring adequate access for testing, troubleshooting, and repair.

Technical Advances in SimulTOF 100 Linear MALDI-TOF

- 20 kV source and novel high speed, high mass detector provides very high sensitivity, resolving power, and accuracy over broad mass range
- isotopic resolution below 3 kDa, and isotopic envelope resolution for high masses to 50 kDa
- High laser rate (5 kHz) and high acquisition rate (up to 50 spectra/s) makes tissue imaging practical
- Proprietary ion optics and high laser rate provide sensitivity and dynamic range limited only by chemical noise
- Resolving power>4000 @2465 Da
- Resolving power>2m for full range from 100 to 2000 Da
- Mass range 100Da-500 kDa
- Mass error <30 ppm across the plate over the mass range 300-30,000 Da with single peak automatic calibration
- Dynamic range up to100,000

Photonis detector

Potential diagram for linear detector

Typical single ion pulse with fast scintillator

Spectrum of α -cyano matrix dimer measured in SimulTOF 100 Linear MALDI-TOF At 15 kV energy using Photonis fast hybrid detector

Mixture of peptide standards, 100 femtomole/ μ L, 2.5 mm spot Laser spot ca. 50 μ m, fluence 1.3x threshold, 40 attomole/spot <1% consumed/laser shot=240,000 molecules

Applications of MALDI-TOF

- Pathogen Identification
- Cancer typing directly from serum, tissue extracts, and other bodily fluids
- Tissue imaging
 - Proteins for cancer typing
 - Small molecules for drug disposition
- Biomarker Identification and Validation
 - Mass Spec Immunoassay
 - Peptide quantitation (SISCAPA and others)
- Clinical assays of biomarkers for diagnosis and treatment
- QC of synthetic olignucleotides, peptides, proteins and small molecules

Performance of SimulTOF 100 Linear for Complex Biological Samples

- Human Saliva
 - Diluted 5:1 in HCCA matrix and spotted on MALDI plate
 - 17 spots analyzed in linear mode over mass range 3000-3000
 - 5000 shots summed to produce spectra
 - At 5 kHz acquisition time is 1 second
- Serum sample
 - diluted 1:10 in sinipinic acid
 - 10 spots analyzed in linear mode over mass range 3000-3000
 - 10000 shots summed to produce spectra
 - At 5 kHz acquisition time is 2 seconds
- Oligonucleotides

Spectrum from one spot (3 mm dia) for 1:5 dilution of saliva sample in HCCA 5000 shots

Examples of Superimposed Spectra from 6 spots across the plate illustrating dynamic range and mass accuracy obtained in saliva analysis

Sensitivity, Dynamic Range, and Reproducibility are Key Metrics

Data from SimulTOF 100 Linear

Sensitivity, Dynamic Range, and Reproducibility are Key Metrics

Data from SimulTOF 100 Linear

These are raw data. No normalization, background subtraction, smoothing or other data processing has been employed.

Conclusions

- Resolving power 500-1000 over wide range is routine
- Normalization to TIC removes most of amplitude variation
- Each spot will yield up to 100,000 shots without degrading resolving power or accuracy and giving dynamic range limited only by chemical noise
- Results might be improved by multiple levels of dilution and use of alternative matrices
- Mass error <30 ppm across the plate over the full mass range with single peak automatic calibration
- Dynamic range up to100,000

Protein images of whole mouse pup at 5 kHz, 37 μ J/pulse, sinapinic acid matrix, 1 mm/s, 500 shots/sp, 50x100 μ m pixels,100,000 spectra in 3 hours Prototype instrument

4748 / (4000 - 30000) - 2.61 mean 3.488 s.d. 40% hits 126.898 max
6117 / (4000 - 30000) - 1.488 mean 2.659 s.d. 7% hits 141.109 max
6793 / (4000 - 30000) - 1.313 mean 1.896 s.d. 2% hits 50.093 max
8552 / (4000 - 30000) - 3.033 mean 2.545 s.d. 35% hits 55.563 max
8765 / (4000 - 30000) - 1.195 mean 1.383 s.d. 6% hits 46.416 max
12400 / (4000 - 30000) - 12.408 mean 21.799 s.d. 6% hits 274.614 max
4964 / (4000 - 30000) - 12.813 mean 13.149 s.d. 73% hits 369.117 max
14958 / (4000 - 30000) - 4.607 mean 12.806 s.d. 9% hits 1259.415 max
15597 / (4000 - 30000) - 6.939 mean 6.97 s.d. 6% hits 164.976 max

SimulTOF 200 in Linear Mode 127,725 spectra 50x50 μm pixels 50 spectra/s at 5 kHz, 2.5 mm/s 45 minutes total

- ----- 8558 2200.302 mean 2429.649 s.d. 38% hits 41045.334 max
- ----- 15597 4842.387 mean 5811.941 s.d. 16% hits 102862.254 max
- ---- 3216 4110.117 mean 7587.706 s.d. 85% hits 176408.567 max

---- 4965 - 7331.397 mean 12048.527 s.d. 46% hits 233517.324 max

---- 4939 - 4247.168 mean 5417.604 s.d. 36% hits 67053.465 max

---- 8552 - 2265.271 mean 2460.431 s.d. 35% hits 41045.334 max

---- 14800 - 16000 - 10097.358 mean 15807.881 s.d. 34% hits 293333.895 max

---- 2788 - 8293.234 mean 17672.01 s.d. 35% hits 250070.744 max

erbilt 2013/slide 4 protein.job/task=3 (Process-Smooth) Smoother#5626 Coml

------ Group:4 Spot:2,978 Shots:100 Peaks:160 File:13923

Specifications for SimulTOF 200 Combo MALDI-TOF

- Linear Analyzer (identical to 100)
 - 20 kV source and novel high speed, high mass detector provides very high sensitivity, resolving power, and accuracy over broad mass range
 - isotopic resolution below 3 kDa, and isotopic envelope resolution for high masses to 50 kDa
 - High laser rate (5 kHz) and high acquisition rate (up to 50 spectra/s) makes tissue imaging practical
 - Resolving power>5000 @2465 Da
 - Resolving power>2m for full range from 100 to 2500 Da
 - Mass range 100Da-500 kDa
- Reflecting Analyzer
 - Resolving power >20,000 at focus mass, >10,000 over range 800-3000 Da
 - Detection limits for peptides and small molecules <10 attomole/mL
 - Mass error <5 ppm RMS with automatic internal calibration

Peptide standards $1fM/\mu$ L CHCA 3000 shots from single spot Calibration peak at 1042.285 is offscale

Resolving power >20,000 at focus mass >10,000 over range 800-3000 Da

Peptide standards 100 fM/ μ L CHCA 500 shots

Peptide standards 100 fM/µL CHCA 500 shots, higher intensity

Lipids using prototype reflector

Figure 1: A 100 µm spatial resolution lipid ion image of a sagittal rat brain tissue section using typewriter continuous laser raster sampling acquired

in 10 minutes. A representative spectrum is shown in A. The ion image overlay (B) of signal from m/z 734.4 (C), m/z 788.5 (D) and m/z 806.5 (E) highlights the differentiation of the spatial distributions for the selected ions. These results correlate to the H&E stained serial tissue section highlighting structural difference between grey matter, white matter and granular cells in the cerebellum (F). Important instrumental parameters:

3 kHz laser repetition rate, 5 mm/s sample stage velocity, and 60 laser shots/spectrum hardware average.

J. M. Spraggins and Richard Caprioli, Mass Spectrometry Research Center and Department of Biochemistry, Chemistry, Pharmacology, and Medicine, Vanderbilt University Medical Center JASMS 2011

----- 734.8 - 203.674 mean 84.807 s.d. 27% hits 675.111 max

SimulTOF 200 in Reflector Mode 110,159 spectra 50x50 µm pixels 50 spectra/s at 5 kHz, 2.5 mm/s 100 shots/pixel 45 minutes total

734.6

---- 760.85 - 568.715 mean 147.787 s.d. 21% hits 1330.527 max

------ 760.85 - 568.715 mean 147.787 s.d. 21% hits 1330.527 max

734.6

760.6

734.6

778.6

Specifications for SimulTOF 300 MS-MS

- High laser rate (5 kHz), multiplexed MS-MS (10x,) and high acquisition rate (up to 50 spectra/s) makes tissue imaging and high throughput LC-MS-MS practical
- Proprietary ion optics and high laser rate provide sensitivity and dynamic range limited only by chemical noise
- High resolution precursor selection (>1000)
- Provides both PSD and CID fragment spectra with high sensitivity, high resolving power, and excellent mass accuracy
- Performance substantially exceeds that of all existing MALDI MS-MS instruments
- Efficient structure determination for molecules detected by MALDI-MS

db:///Testing/laser current test ms.job/task=1 (Manual) Acquisition TOFTOFBipolar-ReflectorMS AverageInTimed

Group:1 Number:224J17 Shots:7,500 Peaks:62 — Group:1 Number:225J16 Shots:5,500 Peaks:64 — Group:1 Number:226J15 Shots:7,500 Peaks:45

----- Group:1 Number:227J14 Shots:5,000 Peaks:40 ----- Group:1 Number:227J14 Shots:7,000 Peaks:37

parameter is fluence in μJ

Imaging of lipids with positive ions

new totof data on local/mouse brain four middle dow

100 shot spectrum from single 50x50 μ m pixel at 5 kHz

10,600 shots @ 5 kHz

MS-MS Diacyl GPCho 32a:0+K⁺

new totof data on local/mouse brain four middle dow:///new totof data on local/four bottom 772 msm

Imaging of lipids with negative ions

GPEtn 40a:6

----- 790.6 - 4609.741 mean 3652.322 s.d. 98% hits 39769.882 max 60 -V Position 22 22 55 · X Position

Mutiplexed MS-MS

Typical ms-ms spectrum of peptide 100 fm loaded, 500 shots @ 5 kHz

Spatial Resolution and Speed

Angle min spot(μm) max scan rate at max res(s/mm²)*
 normal 25 16@ 5mm/s
 30 deg 2.5 1600@ 0.5mm/s
 180 deg 1 10000@ 0.2 mm/s

*50 laser shots/spectrum @5kHz

50 kHz laser now available and may enable 10x further speed

Acknowledgements

- Financial Support
 - NIGMS and NCRR of NIH
 - Christina Hsieh Vestal and the Hsieh Family
- The entire staff at Virgin Instruments
 - Steve Gabeler, Mark Dahl, Joe Valentine electronics
 - George Mills, Matt Gabeler-Lee software
 - Roger Voyer machinist
 - Steve Hattan, Ken Parker scientists
 - Christina Vestal, Bill Gibbs management